Feature / Area	Windows 10	Windows 11
NUMA Awareness	Basic: treats all memory as nearly equal	Improved NUMA locality + latency domain scheduling
Asymmetric Core Scheduling	No support	Thread Director (Intel) / CPPC hints (AMD) support
Memory QoS / Priority	Process-wide priority only	Per-thread/process memory priority & policy control
Persistent Memory (PMEM)	Manual setup via drivers	Native support (esp. in Pro for Workstations)
Hardware Stack Protection (CET)	No CET support	CET with shadow stacks, indirect branch tracking

		Secure Kernel
DirectStorage & MMIO Optimization	Not supported	Native support for DirectStorage (NVMe→VRAM)
Page Combining / Deduplication	Basic, coarse deduplication	Improved combining, transparent large pages
Al Workload Memory Staging	N/A	NPU-aware memory pools via WinML, DirectML
Memory Telemetry	Basic performance counters	Real-time feedback for scheduler

Minimal (Credential Guard)

VBS / Memory Isolation

Full Virtualization-Based Security,

LSASS protection,

decisions

Linux (5.15+ / 6.x)

Why It Matters

Fully NUMA-aware, with usertunable policies (e.g. numactl, cgroups)

Multisocket/multichip systems benefit from locality awareness

Supported via schedutil, EAS, CPPC, and core ranking

Balances efficiency/performance cores dynamically

Supported via cgroups, memcg, and Enables fine-grained resource control in OOM scoring mixed workloads

Full support with DAX, ndctl,
pmem.ioUseful for high-speed in-memory DBs or fault-
tolerant apps

CET support depends on CPU & kernel version (enabled in 6.1+) Mitigates ROP and memory corruption attacks KVM, seccomp, AppArmor, SELinux, memory namespaces Isolates critical memory; protects against lateral movement

ZC streaming via io_uring, VFIO, DMA-BUF, vDPA

Lower latency for gaming, AI, and PCIe devices

KSM (Kernel Same-page Merging),Reduces memory usage in VM-heavy orzswap, zram, THPcontainerized environments

ROCm, ONNX Runtime, TorchDynamo, OpenCL, DRM GPU offload

Exposed via procfs, sysfs, perf, ebpf, Enables smarter decisions by user-space & and pressure stall info kernel on memory pressure