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Web Service Architecture (API)

« User sends a request to the server via:
» Graphical interface (desktop, web or mobile application)
« Command-line interface

e Server sends aresponse on request using some data source
(database or background service)

« The answer becomes visible to the user through the used interface
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Types of web services

« REST (Representational State Transfer)
« Uses standard HTTP protocol
 Allows different data formats (preferred JSON)

 SOAP (Simple Object Access Protocol)

 Uses XML as a data format

« Standard messaging protocol (worse performance and greater
complexity than REST, but greater security)
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REST

* Ensures interoperability on the Internet (RESTful API)
« Different types of applications can communicate with each other

« Use HTTP verbs to create queries:
« POST - creating a new resource (Create)
 GET - retrieving resources (Read)
 PUT or PATCH — update resource (Update)
« DELETE — delete resource (Delete)

» Uses the predefined stateless operations
« Each HTTP request is isolated (does not remember state)
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Example of RESTful APl request and
response

* Request:
GET /api/users

 Response:
200 OK
{ "data": [
{

"id": 1,
"email”: "john@mail.com",
"first _name": "John",
"last _name": "Doe"

¥
1}
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Using the RESTful APlIn C#

* There are several different C# libraries in charge of consuming
a RESTful API, and some of the most famous are:
« HttpWebRequest
* WebClient
« HttpClient
« RestSharp
» ServiceStack
* Flurl
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Mapping JSON objects to C# models
(1/2)

JSON object C# model
{ class User
"id": 1, {

public int Id { get; set; }

public string Email { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }

"email"”: "john@mail.com”,
"first _name"”: "John",
"last name"”: "Doe”
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Mapping JSON objects to C# models
(2/2)

* There are several different C# libraries responsible for mapping
JSON objects to C# models, and some of the most famous are:
 Newtonsoft.Json
* AutoMapper

LC\ ALGEBRA




Asynchronous data retrieval

Synchronous operation Asynchronous operation

» Each task must be completed -« The next task can start during
before the next one can begin  the execution of the current

+ The task is performed on one  task

thread  The task can be executed on
several threads
simultaneously
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Advantages of asynchronous
operation

* Multiple tasks can be executed simultaneously which
generally results better performance

» Performance is definitely better if the tasks are executed on a computer
that has more processor threads and/or cores, or more processors

* If we have one processor thread, it is necessary to do context switching
which slows down the overall performance

* In the case of applications with a graphical interface (eg
Windows Forms), asynchronous operations allow
responsiveness of the application

« Possible to handle an event (eg Click) during data retrieval
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Asynchronous work in C# (in general)

* The concept Iis based on using a class Task
* |t enables the abstraction of writing asynchronous code
« Atask can be a wrapper around any data type

» Using keywords async and await

« async defines an asynchronous method (executed in a separate
thread)

 await defines an operator that waits for the asynchronous method to be
executed, and then retrieves the data that we "wrapped" in a Task

« await runs an asynchronous method so that it does not block the thread from
which it is called

- If we don't use await, the execution of the program continues after the
asynchronous method is called (no waiting for the result)
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Asynchronous work in C# (specifically for
applications with a graphical interface)

« Use of control BackgroundWorker

* Events defined on the control:

 DoWork (background thread)

» Defines a task that runs on a background thread

* |t starts with a method call RunWorkerAsync in an instance of BackgroundWorker
* ProgressChanged (main thread)

» Defines a change in a task running on a background thread

* |t starts with a method call ReportProgress in an instance of BackgroundWorker
« RunWorkerCompleted (main thread)

« Defines a completed task that was running on a background thread

* The task can be successful, unsuccessful, and can also be canceled by setting the
property Cancel (defined in DoWorkEventArgs) to the value true
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Comparison of asynchronous
operations in C#

async / await BackgroundWorker

« Easier work if you only need * Built-in mechanism for
to do a task on a background publishing changes in an
thread executing task

 Better performance * Built-in mechanism for
canceling a started task




