Object-oriented
programming - lab In
NET environment

Lecture 03

Web Service Architecture (API)

« User sends a request to the server via:
» Graphical interface (desktop, web or mobile application)
« Command-line interface

e Server sends aresponse on request using some data source
(database or background service)

« The answer becomes visible to the user through the used interface

LC\ ALGEBRA

Types of web services

« REST (Representational State Transfer)
« Uses standard HTTP protocol
 Allows different data formats (preferred JSON)

 SOAP (Simple Object Access Protocol)

 Uses XML as a data format

« Standard messaging protocol (worse performance and greater
complexity than REST, but greater security)

LC\ ALGEBRA

REST

* Ensures interoperability on the Internet (RESTful API)
« Different types of applications can communicate with each other

« Use HTTP verbs to create queries:
« POST - creating a new resource (Create)
 GET - retrieving resources (Read)
 PUT or PATCH — update resource (Update)
« DELETE — delete resource (Delete)

» Uses the predefined stateless operations
« Each HTTP request is isolated (does not remember state)

LC\ ALGEBRA

Example of RESTful APl request and
response

* Request:
GET /api/users

 Response:
200 OK
{ "data": [
{

"id": 1,
"email”: "john@mail.com",
"first _name": "John",
"last _name": "Doe"

¥
1}

LC\ ALGEBRA

Using the RESTful APlIn C#

* There are several different C# libraries in charge of consuming
a RESTful API, and some of the most famous are:
« HttpWebRequest
* WebClient
« HttpClient
« RestSharp
» ServiceStack
* Flurl

LC\ ALGEBRA

Mapping JSON objects to C# models
(1/2)

JSON object C# model
{ class User
"id": 1, {

public int Id { get; set; }

public string Email { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }

"email"”: "john@mail.com”,
"first _name"”: "John",
"last name"”: "Doe”

LC\ ALGEBRA

Mapping JSON objects to C# models
(2/2)

* There are several different C# libraries responsible for mapping
JSON objects to C# models, and some of the most famous are:
 Newtonsoft.Json
* AutoMapper

LC\ ALGEBRA

Asynchronous data retrieval

Synchronous operation Asynchronous operation

» Each task must be completed -« The next task can start during
before the next one can begin the execution of the current

+ The task is performed on one task

thread The task can be executed on
several threads
simultaneously

LC\ ALGEBRA

Advantages of asynchronous
operation

* Multiple tasks can be executed simultaneously which
generally results better performance

» Performance is definitely better if the tasks are executed on a computer
that has more processor threads and/or cores, or more processors

* If we have one processor thread, it is necessary to do context switching
which slows down the overall performance

* In the case of applications with a graphical interface (eg
Windows Forms), asynchronous operations allow
responsiveness of the application

« Possible to handle an event (eg Click) during data retrieval

LC\ ALGEBRA

Asynchronous work in C# (in general)

* The concept Iis based on using a class Task
* |t enables the abstraction of writing asynchronous code
« Atask can be a wrapper around any data type

» Using keywords async and await

« async defines an asynchronous method (executed in a separate
thread)

 await defines an operator that waits for the asynchronous method to be
executed, and then retrieves the data that we "wrapped" in a Task

« await runs an asynchronous method so that it does not block the thread from
which it is called

- If we don't use await, the execution of the program continues after the
asynchronous method is called (no waiting for the result)

LC\ ALGEBRA

Asynchronous work in C# (specifically for
applications with a graphical interface)

« Use of control BackgroundWorker

* Events defined on the control:

 DoWork (background thread)

» Defines a task that runs on a background thread

* |t starts with a method call RunWorkerAsync in an instance of BackgroundWorker
* ProgressChanged (main thread)

» Defines a change in a task running on a background thread

* |t starts with a method call ReportProgress in an instance of BackgroundWorker
« RunWorkerCompleted (main thread)

« Defines a completed task that was running on a background thread

* The task can be successful, unsuccessful, and can also be canceled by setting the
property Cancel (defined in DoWorkEventArgs) to the value true

LC\ ALGEBRA

LC\ ALGEBRA

Comparison of asynchronous
operations in C#

async / await BackgroundWorker

« Easier work if you only need * Built-in mechanism for
to do a task on a background publishing changes in an
thread executing task

 Better performance * Built-in mechanism for
canceling a started task

