
Object-oriented
programming - lab in

.NET environment

Lecture 03



Web Service Architecture (API)

• User sends a request to the server via:
• Graphical interface (desktop, web or mobile application)

• Command-line interface

• Server sends a response on request using some data source 
(database or background service)
• The answer becomes visible to the user through the used interface



Types of web services

• REST (Representational State Transfer)
• Uses standard HTTP protocol

• Allows different data formats (preferred JSON)

• SOAP (Simple Object Access Protocol)
• Uses XML as a data format

• Standard messaging protocol (worse performance and greater 
complexity than REST, but greater security)



REST

• Ensures interoperability on the Internet (RESTful API)
• Different types of applications can communicate with each other

• Use HTTP verbs to create queries:

• POST – creating a new resource (Create)

• GET – retrieving resources (Read)

• PUT or PATCH – update resource (Update)

• DELETE – delete resource (Delete)

• Uses the predefined stateless operations

• Each HTTP request is isolated (does not remember state)



Example of RESTful API request and 
response
• Request:

GET /api/users

• Response:
200 OK
{ "data": [

{
"id": 1,
"email": "john@mail.com",
"first_name": "John",
"last_name": "Doe"

}
]}



Using the RESTful API in C#

• There are several different C# libraries in charge of consuming 
a RESTful API, and some of the most famous are:
• HttpWebRequest

• WebClient

• HttpClient

• RestSharp

• ServiceStack

• Flurl



Mapping JSON objects to C# models 
(1/2)

JSON object

{
"id": 1,

"email": "john@mail.com",

"first_name": "John",

"last_name": "Doe"

}

C# model

class User

{

public int Id { get; set; }

public string Email { get; set; }

public string FirstName { get; set; }

public string LastName { get; set; }

}



Mapping JSON objects to C# models 
(2/2)

• There are several different C# libraries responsible for mapping 
JSON objects to C# models, and some of the most famous are:
• Newtonsoft.Json

• AutoMapper



Asynchronous data retrieval

Synchronous operation

• Each task must be completed 
before the next one can begin

• The task is performed on one 
thread

Asynchronous operation

• The next task can start during 
the execution of the current 
task

• The task can be executed on 
several threads 
simultaneously



Advantages of asynchronous 
operation

• Multiple tasks can be executed simultaneously which 
generally results better performance
• Performance is definitely better if the tasks are executed on a computer 

that has more processor threads and/or cores, or more processors

• If we have one processor thread, it is necessary to do context switching
which slows down the overall performance

• In the case of applications with a graphical interface (eg 
Windows Forms), asynchronous operations allow 
responsiveness of the application
• Possible to handle an event (eg Click) during data retrieval



Asynchronous work in C# (in general)

• The concept is based on using a class Task
• It enables the abstraction of writing asynchronous code
• A task can be a wrapper around any data type

• Using keywords async and await
• async defines an asynchronous method (executed in a separate 

thread)
• await defines an operator that waits for the asynchronous method to be 

executed, and then retrieves the data that we "wrapped" in a Task
• await runs an asynchronous method so that it does not block the thread from 

which it is called

• If we don't use await, the execution of the program continues after the 
asynchronous method is called (no waiting for the result)



Asynchronous work in C# (specifically for 
applications with a graphical interface)

• Use of control BackgroundWorker
• Events defined on the control:

• DoWork (background thread)

• Defines a task that runs on a background thread

• It starts with a method call RunWorkerAsync in an instance of BackgroundWorker

• ProgressChanged (main thread)

• Defines a change in a task running on a background thread

• It starts with a method call ReportProgress in an instance of BackgroundWorker

• RunWorkerCompleted (main thread)

• Defines a completed task that was running on a background thread

• The task can be successful, unsuccessful, and can also be canceled by setting the 
property Cancel (defined in DoWorkEventArgs) to the value true



Comparison of asynchronous 
operations in C#

async / await

• Easier work if you only need 
to do a task on a background 
thread

• Better performance

BackgroundWorker

• Built-in mechanism for 
publishing changes in an 
executing task

• Built-in mechanism for 
canceling a started task


