
Object-oriented
programming - lab in

.NET environment

Lecture 04



Creating WindowsForms control

• In addition to the controls that come with the .NET framework, it 
is possible to create your own controls

• There are two types of controls we can create:

• User controls

• They are most often used

• Custom controls



User controls

• User controls inherit from the class UserControl

• They consist of any combinations of existing controls and 
components

• That is why they are also called complex or composite controls

• We add the user control to the form in the same way as other 
controls

• All controls in the user control are private

• We can add members to the user control:

• Methods, properties, events, ...



Custom controls

• They inherit the class Control

• They provide the greatest possibility of adjustment

• The most demanding to develop

• Key feature: the control must draw itself

• Drawing needs to be done by overriding method OnPaint()



Validation

• Validation is the procedure for checking the correctness of the data 
entered by the user in the form

• Component ErrorProvider is responsible for displaying a message 
about incorrect input

• Validation procedure:

1. Let's set a property CausesValidation on true (default value) to the control that 

receives the user's input (eg TextBox)

2. On the same control we implement a method to handle the event Validating

1. If there is no error, we call the method SetError() with an empty string on the ErrorProvider

2. If there are errors, we call the method SetError() with an error message on the ErrorProvider



Globalization and localization

• Globalization

• Display of data (time, date, currency, number, ...) in formats adapted to 

a specific culture

• For example:

• In Croatia, we write the number as 1.800,00

• In the USA, the same number is written as 1,800.00

• Localization

• Displaying data in the language of a specific culture (translation)

• For example:

• The title of the form in Croatian can be "Boja"

• A title of the same form in English can be "Color"



Culture

• Term culture in .NET implies the following elements:

• Language

• Alphabet (optional)

• Region (optional)

• Neutral culture: contains only language information

• Language: hr, sr, en, ...

• Specific culture: specifies language and region (can also be 
alphabet)

• Language and region: hr-HR, hr-BA, en-US, en-UK, en-CA, en-AU, ...

• Language, alphabet and region: sr-Cyrl-BA, sr-Cyrl-CS, sr-Latn-BA, sr-

Latn-CS, ...



Culture change

• Culture is implemented in the class CultureInfo

• It contains information about the format of time, date, currency, ...

• Globalization is set using:

• Thread.CurrentThread.CurrentCulture

• By default, the culture of the selected regional settings is applied

• Localization is set using:

• Thread.CurrentThread.CurrentUICulture

• By default, the culture (language) of the operating system is applied

• Specifies which resources will be loaded into localized forms



Localized forms

• Each form can have multiple versions - one for each desired culture

• We choose culture using CurrentUICulture

• Once selected, the application will load the resources of the selected culture

• If the resources do not exist, it will load the resources of the default culture

• Culture selection must be done before displaying the form

• It is also possible to dynamically change the localized strings on the form

• Essential properties of the form for localization:

• Localizable – if set to value true, the designer stores the properties of 

forms and controls in resource files

• Language – the designer displays the selected localized version of the form



Printing

• The component responsible for printing is PrintDocument

• It works as as follows:

1. On the instance of the class PrintDocument we define the method for 
handling events called PrintPage

2. On the instance of the class PrintDocument method Print() is called 

3. The PrintPage event will be raised for the first page

• Printing on a paper is done using Graphics class

• At the end of the printout, the value of the property HasMorePages is set 
on an instance of the class PrintPageEventArgs

4. As long as HasMorePages equals true, the PrintPage event is raised

5. When the document is sent for printing, the EndPrint event is raised



Additional controls for printing

• When printing, we can use additional controls:

• PrintDialog: represents a dialog for selecting the printer, the pages you 

want to print, the number of copies, ...

• PageSetupDialog: presents a dialog for selecting paper size, page 

orientation, margins, ...

• PrintPreviewDialog: represents a dialog for previewing the document 

before printing

• PrintPreviewControl: used to develop your own dialog for previewing the 

document before printing

• All the listed controls are connected to PrintDocument 
component via Document property


