
Object-oriented
programming - lab in

.NET environment

Lecture 05



Windows Presentation Foundation

• WPF is Microsoft's primary technology for creating graphical user interface (GUI)

• Main goal:

• Separate the user interface from the program logic

• Basic features of WPF:

• Emphasis on the visual component of the application

• Declarative programming (XAML - Extensible Application Markup Language)

• It is used to describe the user interface in a declarative way

• The main goal is to facilitate the cooperation of developers with experts from other fields (e.g., UI 

designers)

• Resolution independence

• Hardware acceleration (uses DirectX for plotting)

• Adaptability



The structure of the initial WPF project
• Dependencies

• AssemblyInfo.cs

• App.xaml - App.xaml.cs – declaratively describes what starts Main + events on the app level

• MainWindow.xaml - MainWindow.xaml.cs – user interface and events on the window level



Declarative and procedural

• Almost anything that can be done with XAML can be done with the preferred .NET 

procedural language

• As it was done with the Main configuration, the paradigm continues to build the GUI

• XAML (object element):

• C#:

• Defining attributes (property attributes or event attributes) is identical to defining a property 

or event on an object



Namespaces

• The name of the element (eg Button) is the name of the class - but from which 

namespace?

• The mapping of XAML namespaces to .NET namespaces is built into the WPF assembly 

(assembly)

• The root element of the XAML file must define at least one (default) namespace to define 

itself and other child elements

• It includes a series of .NET namespaces that contain all the core WPF classes



Namespaces
• XAML files use the x-prefixed namespace

• It includes a set of .NET namespaces that contain all the core XAML classes

• clr-namespace:declared within assembly

• Relationship of XAML and code-behind

• XAML document segment:

• We said we wanted an instance of the class MainWindow which inherits Window

• Segment of code-behind document:



Logical and visual trees

• Logical tree: a set of elements defined in XAML

• Visual tree: an expanded version of the logical tree in 

which each element is expanded into its constituent 

parts

• For example, if we have XAML:

Window

StackPanel

Button

String

Window

StackPanel

Button

ButtonChrome

ContentPresenter

TextBlock

String

Visual treeLogical tree



Elements as properties (property elements)

• One of the basic features of WPF is 

composition of control, eg the content of the 

button does not have to be just text:

• The same can be done in XAML using elements 

as properties (property elements):



Elements as properties (property elements)
• Property Content is set using a XAML element instead of an attribute

• Within Button.Content the dot is what makes the difference between an element as an 

object and an element as a property

• They are always in format ClassName.PropertyName



Elements as properties (property elements)

• They can also be used when defining simple content:



Type converters

• From the previous example, it can be concluded that properties whose values ​​are not 

string or object are set by using string values

• This is possible due to implicit conversion to the appropriate type using type converter

• WPF provides converters for most common types (Brush, Color, font, ...)

• These are classes that inherit TypeConverter (BrushConverter, ColorConverter, FontConverter, ...)

• Without type converter we would have to use elements as properties:



Type converters
• In the previous example we used Color type convetrer

• If it didn't exist, we would have to define the property as follows:

• This method can be used because there is type converter which can convert type string 

in bytes which is expected at A, R, G and B values



Markup extensions

• They represent a XAML technique for obtaining values ​​that are not of a primitive type or 

of a specific XAML type

• eg we want to change the background of the control to a gradient color using string values

• When an attribute value is enclosed within curly braces, XAML parser treats that value as a 

tag extension (markup extension)

• Within System.Windows.Markup namespace (that's why the prefix x) there are several 

built-in markup extension classes (according to convention suffix extension can be 

removed from the name)



Markup extensions

• NullExtension allows Background property to has a value null which is otherwise not 

supported by BrushConverter class

• StaticExtension class allows the use of static property values ​​of objects

• In the example is the height of the Button control set to the height value of the system icons, which 

is obtained from the static value of the property IconHeight in class SystemParameters



Creating your own tag extension

• A class must inherit MarkupExtension

• When using a custom tag extension, the namespace must be specified



Controls with one child

• Individual WPF controls can be 

assigned a single object as their 

content (content controls)

• Typically, content can be assigned 

through a property Content or as a 

child, for example:



Controls with multiple children

• Individual WPF controls can have multiple objects 

as content

• For example ComboBox, ListBox, 

TabControl, ...

• Each object can be a control or some other 

object

• Typically, content can be assigned through a 

property Items or as multiple children (Items is 

content property for e.g. ListBox), for example:



Attached properties

• An attached property is a dependent property that can be 

assigned values ​​on classes other than the one where it is 

defined

• eg we want to define the font type and size to StackPanel 

class that does not have these properties

• The desired properties are defined at TextElement class and can be 

assigned via attached properties


