
Object-oriented
programming - lab in

.NET environment

Lecture 06



Arrangement

• We understand the sizing and positioning of 

controls

• We distinguish between three types of 

management:

• Size control

• Position control

• Application of transformations



Size control
• WPF elements generally tend to scale to fit their content

• The determination of the size of the element is affected by various properties:

• Width, Height – explicit width and height ("stronger" than Stretch settings)

• It must be between Min… and Max…

• MinWidth, MinHeight – minimum dimensions of the element

• MaxWidth, MaxHeight – maximum dimensions of the element

• If there is more space in the parent, the element will not expand, even if the setting is 

Stretch

• Properties Margin and Padding - determine the additional space outside or inside 

the element (the value is the structure Thickness)



Size control

• Property Visibility:

• Visible – the element is drawn and participates in the layout

• Collapsed – the element is invisible and does not participate in the layout

• Hidden – the element is invisible, but participates in the layout



Position control
• Properties HorizontalAlignment and VerticalAlignment determine the horizontal 

and vertical alignment of the control within its container

• Horizontal: Left, Right, Center, Stretch

• Vertical: Top, Bottom, Center, Stretch

• The default value of both properties is most often Stretch



Position control

• Properties HorizontalContentAlignment and 

VerticalContentAlignment – determine the 

alignment of content within the control

• By default they are Left and Top



WPF principles
• WPF recommends the following:

• Elements should not be explicitly sized

• They should grow with their content

• Acceptable limits are determined with the Min… and Max… settings

• Elements do not need to define their position with coordinates

• They should be sorted by their parent according to their size, order, and other 

information specific to the parent

• For additional space Margin should be used

• Panels divide the available space for children

• They try to give everyone the desired size

• Panels are nested: usually first Grid, StackPanel and then others...



Hierarchy of classes



Layout using panels

• The most important panels in WPF are:

• Grid

• StackPanel

• WrapPanel

• DockPanel

• Canvas



Grid

• The most useful and frequently used panel that allows you to arrange your elements in 

multiple rows and columns

• It is used to divide windows into multiple regions, and StackPanels are often used in 

certain regions

• RowDefinitions property contains RowDefinition elements that define rows

• ColumnDefinitions property contains ColumnDefinition elements that define columns

• Attached properties Grid.RowSpan and Grid.ColumnSpan allow content to span across 

multiple cells



Grid

• The size of rows and columns is expressed by the type value 

System.Windows.GridLength which can be:

• Absolute – a numerical value is set as height and width

• Auto – the size is set automatically according to the content

• Proportional (* - asterisk) – available space is divided proportionally (default value)

• Controls are placed in the corresponding cell Grid using attached properties 

Grid.Column and Grid.Row



StackPanel

• It is used to arrange a small number of controls and is often placed in a cell Grid

• Depending on the property Orientation arranges elements vertically (by default) or 

horizontally



WrapPanel

• Arranges the elements as StackPanel, except that if there is no space, it moves them to 

additional rows or columns depending on the orientation

• The most important features:

• Orientation – like using StackPanel, except that horizontal orientation is implied



DockPanel

• It allows elements to be attached along the entire side of the panel, stretching them to fill 

its entire width, or height

• Attached property Dock can take four values:

• Left

• Top

• Right

• Bottom

• The lack of Fill value can be compensated for by configuring the property LastChildFill



Canvas

• It supports the placement of elements in the classic sense - positioning using explicit 

coordinates

• Coordinates are device-independent units

• Except relative to the upper left corner, coordinates can be specified relative to any other 

angle

• Features: Left, Top, Right, Bottom

• The predetermined Z-order is determined by the order in which the elements are added

• Attached property Panel.ZIndex can change the order

• It is rarely used



Application of transformations

• All elements have two type properties Transform which are used for element 

transformations:

• LayoutTransform – is applied in the arrangement phase, before plotting

• RenderTransform – is applied after plotting

• RenderTransformOrigin represents the starting point

• Transformation methods:

• RotateTransform – rotation

• ScaleTransform – increasing or decreasing the element

• SkewTransform – distortion of the element

• TranslateTransform – moving the element



Events

• Routed events are events designed to work with the element tree

• Almost all WPF events are routed

• Each directed event uses one of three strategies:

• Tunneling – the event is first raised at the root and then at each element down the tree until 

it reaches the element that is the actual source of the event (usually prefixed with Preview)

• for example PreviewMouseDown()

• Bubbling – the event is first raised on the original element and then in turn on each element 

above in the hierarchy until it reaches the root

• for example MouseDown()

• Direct – the event is raised only on the original element

• for example MouseEnter()



Type RoutedEventArgs 

• All processing methods have the first argument type of object, and the second argument 

type of RoutedEventArgs (extends EventArgs)

• Class RoutedEventArgs has the following useful properties:

• Source – an element of the logical tree that raised the event

• OriginalSource – an element of the visual tree that raised the event

• If we click on the edge of a Label control:

• Source: System.Windows.Controls.Label

• OriginalSource: System.Windows.Controls.Border



Example of routed events

• The transmission of routed events up and 

down the tree occurs even if some 

elements do not support a particular event

• This is why routed events are also 

called attached events

• For example, StackPanel does not 

support the event Click, but it can be 

processed by:


