
Object-oriented
programming - lab in

.NET environment

Lecture 07



Themes

• Resources

• Animations

• Styles

• *Localization

• *User controls



Resources

• They give us the ability to save data for a particular control, window or 

application

• Any .NET objects can be saved



Resources

• We can define them at the element, window or application level

• When defining, we set the attribute x:Key

• In XAML:

• As attribute value - we use extension StaticResource

• The value is loaded after the XAML is loaded, and changing the value during the lifetime of the 

application will not manifest in the application

• DynamicResource

• The value is loaded when an attempt is made to retrieve it, and a change in the value during the 

lifetime of the application will be manifested in the application

• As a new element - StaticResourceExtension

• In the code we use a method FindResource() defined on each element



Examples of 
resource usage



Animations

• We can animate any dependent property for which there is a corresponding animation type 

(there are over 40 built-in animation types)

• WPF has three built-in animation types:

• Interpolation

• We define the initial and final value of the dependent property and the duration of the 

animation

• Keyframe animations

• We define key points that WPF then connects for a given duration

• Path-based animations

• They mostly serve to move the element along the given path (*advanced animations)



Embedded animations

• According to the data type of the dependent property that we want to animate, we must 

choose the appropriate animation

• WPF comes with a number of built-in animations:

• DoubleAnimation

• ColorAnimation

• Int32Animation

• PointAnimation

• ThicknessAnimation

• …



Defining animation

• Each animation supports the following properties:

• Storyboard.TargetProperty: the dependent property we're animating

• From: initial value of the dependent property we are animating

• To: the final value of the dependent property we are animating

• Duration: animation duration in h:m:s.ms format

• AutoReverse: the animation also takes place backwards or not

• RepeatBehavior: how many times the animation should be repeated (1x, 2x, ..., Forever)



Storyboard accommodation

• Animations are always defined within Storyboard object

• Storyboard defines a dependent property to be animated

• BeginStoryboard defines when the animation starts

• It is usually triggered after some event

• We put it as a content of EventTrigger

• EventTrigger can be placed inside Triggers collections of any element



An example of a simple animation



Examples of more 
complex animations



Styles

• A style contains a series of settings that apply to the desired elements

• The goal is to standardize the appearance of the elements and enable simple changes

• They can be defined at the control, window, or application level

• A style usually consists of:

• Setters that set the values ​​of dependent properties

• Triggers that react to an event and trigger animations (EventTrigger) or set properties 

(Trigger)



Applying style to child elements

• It applies to all child elements (not only direct)



Apply style by name

• Style is usually defined as a resource

• x:Key– by defining a key, the 

style must be explicitly applied to 

the individual control

• Most often, the TargetType is 

also defined on the 

corresponding element type



Apply style by type

• If we omit x:Key when defining the 

style, it refers to all elements of the 

defined type



Applying multiple styles

• One style can be based on another style 

and thus achieve the effect of 

inheritance



Applying style triggers

• The style often also contains 

triggers (collection Triggers)

• Object Trigger allows 

setting an array of 

values ​​when the default 

property takes on the 

default value



Applying style triggers

• EventTrigger enables 

the use of animations when 

a given event occurs


