
Object-oriented
programming - lab in

.NET environment

Lecture 08



Themes

• Templates

• Binding

• MVVM



Control templates

• Most WindowsForms controls are wrappers around the Win32 API which is immutable

• WPF controls are written entirely in .NET

• We can change their appearance as desired

• Control templates allow you to change the default appearance of a WPF control

• Every WPF control has a Template property that is type of ControlTemplate

• By setting the property to a new value, we change a look of control

• Behavior remains unchanged!



Control templates

• Each WPF control has its own implicit template that defines which visual elements the control 

consists of

• To change the template of an element, we usually proceed as follows:

1. We define a template as a resource type of ControlTemplate

2. We apply the template to the desired elements

• It is possible to apply a template via a style by defining a style that sets the Template property 

to the new template



Template elements

• A template definition usually consists of:

• The target element for which it is defined (property TargetType)

• Consisting elements (visual tree)

• Triggers that define dynamics



Template elements

• We often name visual tree elements so that we can access them from triggers

• We name the element using attribute x:Name

• We access the element using attribute TargetName

• The control for which we are creating a template has a set of properties and their 

values ​​defined

• If we want to set individual properties within the template on the control to which the template 

is applied

• We use the XAML extender TemplateBinding and its property Property to take the value from the 

control



Binding

• Binding is a relationship that tells WPF to take data from the source object and set it as the 

value of the dependent property of the target object

• The source object can be anything: a WPF element, DataRow, an instance of the class, …

• The target property is always a dependent property

• We will go through two types of connections:

• The source object is some WPF element

• The property from which we take data is then the dependent property

• The source object is any .NET object



Defining bindings through XAML

• We usually define the binding through XAML

• The term binding expression defines where and how we take data

• We define it in XAML expander Binding

• We reference the source element with a property ElementName

• We reference the source property with the property Path

• We define the connection direction with a property Mode:

• OneWay, OneWayToSource, TwoWay, OneTime

• In case of a problem with the binding defined, WPF will not throw an exception

• Details about the errors can be found in the debug window



Defining bindings through code

• Class Binding represents the connection object:

• We reference the source element with a property Source

• We reference the source property with the property Path and we set it to an instance type 

of PropertyPath

• We define the connection direction with a property Mode and we set it to the enumeration 

BindingMode value

• When we have prepared the object, we call the method on the target element SetBinding()



Connecting to elements

• The simplest form of binding is binding to WPF elements

• For example, let's connect TextBox with Slider:

• By changing the Slider, the content of the TextBox is updated

• But, also by changing the value of the TextBox, the Slider is being updated

• The default mode is TwoWay

• Only after losing focus (property UpdateSourceTrigger)



An example of connecting to elements

• Let's define vertical and horizontal 

Slider which allows the Ellipse to 

move

• The Ellipse should be able to move 

around the entire parent container



Binding to .NET object property data

• In order for changes to the property values ​​of a .NET object to manifest on the user 

interface (UI), it needs to be used for binding MVVM (model-view-viewmodel) form:

• The data encapsulates view model (VM) which implements INotifyPropertyChanged 

interface

• VM is bound to the parent using a property DataContext

• Controls reference properties viewable model by binding

• Only the property Path is used because DataContext is a data source



MVVM – Model-View-ViewModel

• Presentational pattern

• Fixes tight connection between Model and View in MVC pattern

• The data for the presentation are presented as ViewModel entity that encapsulates all 

the data needed for the presentation

• It can also connect several entities

• Observable pattern

• WPF allows implementation of INotifyPropertyChanged interface that allows the 

connected element to receive notifications of changes and is updated accordingly


