
Accessing Data from Program Code
Exercise 01 – Postgres architecture and cloud provisioning

Strana ▪ 2

Reminder

▪After the introductory lecture, you should have created the
account on Supabase and explored basic functionalities
such as connecting to the database

▪Project task was discussed and explained in the
introductory lecture and formally defined in ADPC-Project-
Task.pdf document on IE

o if you have any further questions, you can contact me after the
class or on mail/Teams

https://supabase.com/

Strana ▪ 3

Introduction to Postgres

▪Open-source relational database

o Reliable

o Rich ecosystem of extensions

▪PostgreSQL dialect !

o Slightly different to what you are used to with MSSQL (T-SQL)

o Capable

▪Newest versifunctionalitieson: 18

o 2025-09-25

Strana ▪ 4

Setting up Postgres cloud instance

▪Follow the steps that will be described in the exercise and
available on the IE afterwards

▪Make sure to use Session Pooler and to set postgres
user password

Strana ▪ 5

Postgres Architecture

Strana ▪ 6

Postgres processes

▪Postgres is a host to four main types of processes:

o Postmaster (Daemon) Process

o Background Process

o Backend Process

o Client Process

Strana ▪ 7

Postgres Architecture

▪ Postmaster (postgres)

o the main server process, responsible for managing child processes.

▪ Client connection process (Backend process)

o each client connection gets its own backend process (forked by
Postmaster)

▪ Background processes:

o WAL Writer→writes Write-Ahead Logs

o Background Writer → flushes dirty pages to disk

o Checkpointer→ ensures data consistency by writing data periodically

o Autovacuum Launcher→ handles cleanup & vacuuming of dead tuples

o Archiver (if archiving enabled)

o Statistics Collector (tracks table/column usage)

Strana ▪ 8

WAL

▪Write Ahead Logging

o Data Integrity !

o WAL's central concept is that changes to data files (where
tables and indexes reside) must be written only after those
changes have been logged, that is, after WAL records describing
the changes have been flushed to permanent storage. If we
follow this procedure, we do not need to flush data pages to disk
on every transaction commit, because we know that in the event
of a crash we will be able to recover the database using the log:
any changes that have not been applied to the data pages can be
redone from the WAL records. (This is roll-forward recovery, also
known as REDO.)

o significantly reduced number of disk writes

Strana ▪ 9

WAL

▪At each checkpoint, all dirty buffers must be written to disk
and WAL must be archived/truncated

o checkpoints happen periodically – configurabl with
checkpoint_timeout and max_wal_size or can be
triggered manually

o can set synchronous_commit and commit_delay

▪ Information about operations found in:

o pg_stat_bgwriter

o pg_stat_wal

Strana ▪ 10

Vacuum

▪Updates or deletes in the table create new row versions,
old ones remain until cleaned

▪So called “dead tuples” still reside in memory after being
marked as deleted

o Similar to “soft delete” mechanism that we mentioned before

▪ Information can be found in pg_stat_user_tables

o last_autovacuum

o last_vacuum

Strana ▪ 11

B-Trees

▪The choice of B-Tree is advantageous for

o equality and range queries

o sorting operations

o data consistency and performance

Strana ▪ 12

B-Tree

▪Keys represent indexed values, organized in ascending
order within each node

▪Pointers are links to child nodes or to the actual data if they
are in leaf nodes

▪Binary search is performed on keys within each node

CREATE INDEX index_name ON table_name (column_name);

Strana ▪ 13

Configuration files

▪postgresql.conf

o Main configuration file that defines parameters like memory,
connections, logging, WAL, query tuning (shared_buffers,
work_mem, max_connections, logging_collector)

▪pg_hba.conf

o controls client authentication by specifiying which users can
connect, from where, using what method (md5, scram, trust,
peer, etc.)

▪pg_ident.conf

o Used for username mapping between system users and
PostgreSQL users (authentication methods like ident.)

Strana ▪ 14

Databases

▪Upon executing initdb, three databases are created:
template0, template1, and postgres

o Cloud provided databases can have more premade databases

▪template0 and template1 serve as template databases
for creating user databases and include system catalog
tables

▪ Immediately after executing initdb, two tablespaces are
created: pg_default and pg_global

o pg_default is located in $PGDATA\base

o pg_global is located in $PGDATA\global

Strana ▪ 15

Tables

▪Each table is associated with three files

o One for storing table data, named after the table’s OID

o One for managing the table’s free space, named OID_fsm

o One for managing the visibility of table blocks, named OID_vm

▪ Indexes lack a vm file, thus consisting of only two files: OID
and OID_fsm

Strana ▪ 16

Query execution example

SELECT * FROM users WHERE id = 10;

▪ Parser

o detects table users, column id

▪ Rewrite

o expands rules or views (if users is a view)

▪ Planner considers:

o Sequential scan (if table is small)

o Index scan (if id has index)

▪ Execute

o uses best plan, fetches matching rows

▪ Result

o rows returned to client

Strana ▪ 17

Examples

CREATE TABLE animal (

id SERIAL PRIMARY KEY,

heat_control TEXT

);

INSERT INTO animal (heat_control)

SELECT CASE

WHEN random() < 0.75 THEN ‘endotherm’

ELSE ‘ectotherm'

END

FROM generate_series(1, 100000);

Strana ▪ 18

Execution planner

▪ANALYZE will generate statistics in pg_stats

▪Then use EXPLAIN to the query plan created by execution
planner

SELECT attname, n_distinct, most_common_vals,
most_common_freqs

FROM pg_stats

WHERE tablename = 'animal’;

EXPLAIN SELECT * FROM animal WHERE heat_control =
'ectotherm’;

▪Check the different plans before and after running ANALYZE

Strana ▪ 19

Noticeable specifics

▪Sequence

▪Dialect

Strana ▪ 20

Postgres Sequence

▪Sequences are special single-row tables designed to
generate unique values

o created implicitly when you use SERIAL/BIGSERIAL or
explicitly with CREATE SEQUENCE

o backed by a counter stored in a catalog-managed relation and
stored in pg_sequence system catalog

o once incremented, the value is “lost” even if the transaction
rolls back (ensures uniqueness)

Strana ▪ 21

Postgres Sequence

▪Functions:

o nextval('seq’)

• increments and returns next value

o currval('seq’)

• last value used in this session

o setval('seq', N)

• set sequence to N

▪Since PG 10+, identity columns (GENERATED ALWAYS AS
IDENTITY) are preferred over SERIAL.

Strana ▪ 22

Cloud provisioning

▪After you have created new Postgres instance, connect to
this Postgres instance via DBeaver, DataGrip or VS Code
extension

▪Explore basics and underlying tables in the Postgres system
schema

▪Now write your own connection to the Postgres cloud
instance by exploring system tables using Npgsql library!

Strana ▪ 23

Task #1

▪Query and explore the following system databases:

o pg_database

o pg_stat_database

o pg_stats

o pg_stat_user_tables

o pg_stat_activity

o information_schema.tables

Strana ▪ 24

Task #2

▪Using ADPC-Exercise-01-Seed.sql file from IE to populate the
database

▪Analyze the table definitions and content

▪Retrieve the following information:

o Top 5 students by average score

o Most popular exams (by applications)

o Pass rate (%)

Strana ▪ 25

Task #3

▪Write a program that inserts two students inside a
transaction

▪Force an error on the second insert (e.g. duplicate primary
key) and show that the first insert is rolled back

Strana ▪ 26

Task #4

▪List all databases and then list all tables and their columns
using

o pg_database

• oid, datname

o pg_stat_database

• xact_commit

• xact_rollback

Strana ▪ 27

Task #5

▪Create a table called sensor_reading that has three float
fields: humidity, temperature and AQI alongside primary
key

▪Programmatically create a CSV file with 100000 rows of
mock data for sensor reads

▪ Insert the data from CSV file using

o INSERT

o COPY

Strana ▪ 28

In the next week’s episode…

▪Docker setup !

▪More interesting Postgres functionalities

o Pivots and window functions

▪Connecting to Postgres using C# - Npgsql

https://www.npgsql.org/

	Slide 1: Accessing Data from Program Code
	Slide 2: Reminder
	Slide 3: Introduction to Postgres
	Slide 4: Setting up Postgres cloud instance
	Slide 5: Postgres Architecture
	Slide 6: Postgres processes
	Slide 7: Postgres Architecture
	Slide 8: WAL
	Slide 9: WAL
	Slide 10: Vacuum
	Slide 11: B-Trees
	Slide 12: B-Tree
	Slide 13: Configuration files
	Slide 14: Databases
	Slide 15: Tables
	Slide 16: Query execution example
	Slide 17: Examples
	Slide 18: Execution planner
	Slide 19: Noticeable specifics
	Slide 20: Postgres Sequence
	Slide 21: Postgres Sequence
	Slide 22: Cloud provisioning
	Slide 23: Task #1
	Slide 24: Task #2
	Slide 25: Task #3
	Slide 26: Task #4
	Slide 27: Task #5
	Slide 28: In the next week’s episode…

