
Development of Web 
Applications

Lecture 14



Today

• What’s the catch with monolithic systems?

• What is an architectural quantum?

• The fundamentals of microservice architecture

• Concepts: granularity, independence, boundaries

• Challenges: consistency, testing, orchestration

• Event sourcing and saga pattern

• Tools and technologies for microservices

• When (not) to use microservices



Problems with Monolithic Solutions
• A monolithic solution is written in a single programming language.

What if we have two developers, each highly proficient in different languages?

• Today, there's often a need to scale parts of a system.

Can a monolithic application scale a specific business function independently?

• A failure in one part of the monolith can crash the entire system.

How can we prevent this reliably?

• Can we develop and deploy each business function independently?



Monolithic Architecture
• The application is developed and executed as a single program component – typically an 

executable file like a Windows .exe, or a DLL host

• It contains all business functionalities

• Advantages: 

• Simple deployment

• Simple local development environment

• Disadvantages:

• Maintenance becomes difficult as the app grows, or even impossible past a certain size

• Even small changes require rebuilding and testing the entire application

• Scalability is limited



Layered Monolith
• Organized into layers:

• Presentation Business Layer -> Data Access Layer

• UI -> Application -> Domain -> Infrastructure

• Each layer depends on the one below (e.g., presentation layer depends on the business layer)

• Helps maintainability through separation of concerns

• Still a single component, one build, one deployment

• Also referred to as a single architectural quantum



Architectural Quantum
• An independent component with high functional cohesion.

• The smallest architectural unit that can be independently developed, tested, and delivered.Additionally, an 

architectural quantum can be independently

• Versioned

• Compiled/built

• Deployed

• Scaled

• Examples:

• Monolithic application (.exe) – one large quantum

• Lambda function (e.g., AWS Lambda, Azure Function)

• Docker container for a specific purpose (e.g., periodic batch job)



Introduction to Microservices Architecture
Microservices architecture is an approach to software development where a system is composed of a set of small, 

independent services, each implementing a specific business functionality.

Key concepts:

• Independent components: each (hopefully) with a clear responsibility

• Distributed: services communicate (e.g., via RESTful APIs)

• Technological heterogeneity: components can use different languages and platforms

• Independent deployment and scaling: each service is developed, tested, and deployed independently

• Business functionality == Implemented business capability within a bounded context



Quantum Characteristics of Microservices Architecture

• In microservices architecture, the goal is for each business function to be a separate architectural quantum

• Each service has its own lifecycle (build, test, deploy, scale)

• This provides high independence and system flexibility

• Examples:

• OrderService as a microservice that manages orders with its own DB and REST API → a quantum

• InventoryService, UserService, NotificationService – all separate quanta

• What is the smallest architectural unit? Some argue it's a single function like handleOrder(), other say it’s a service like  

OrderService ☺

• Debatable, depends on organization structure, team size, DevOps maturity, business boundaries (bounded 

contexts)



Characteristics of Microservice Architecture

• Business functions developed as separate services: Orders, Inventory, Delivery, Payment

• Services communicate via messages (synchronously or asynchronously)

• Each service is developed by its own team – sometimes even a single person

• Each service may use its own tech stack:

• Languages: .NET Core, Java, Node.js, PHP, Python, Go, Rust...

• Technologies: Docker, Kubernetes, API Gateway, RabbitMQ, Kafka...



Microservice Challenges
• Fault tolerance and data consistency: what if part of the system fails?

• Testability: how to test a distributed system locally?

• Management and orchestration: how to control 10+ services?

• Versioning and compatibility: what if a service changes its API?

• Deployment: how to release changes across multiple services in sync?



Failures and Consistency
What if a service "goes down"? 

• ACID-style atomicity is no longer available as in monoliths, so transactions are not a real solution any more

• Example with 2 microservoces:

• OrderService – stores an order in its own database

• InventoryService – updates inventory stock

• If OrderService succeeds but InventoryService fails (e.g., network error), the system ends in an inconsistent state.

• To solve this, we can use two new concepts:

• Event Sourcing – events are permanently stored, and state is derived from event history

• Event-driven Saga Pattern – distributed transactions broken into coordinated, yet independent steps with compensation 

logic



Failures and Consistency: Event Sourcing

Event Sourcing models all state changes as a sequence of events

• Instead of persisting state, the system records all events that led to it

• The current state is reconstructed by „replaying” events

• Allows replay of sequence or a single events and reactive processing

• Transparency: complete audit trail of changes



Failures and Consistency: Saga Pattern
Saga Pattern manages distributed transactions through a sequence of local transactions

• Each local transaction emits an event triggering the next step

• If a step fails, a compensating action is triggered

Example:

• OrderService creates an order

• InventoryService reserves items

• PaymentService charges the customer

• If PaymentService fails → InventoryService cancels the reservation

• Types: choreographed saga (event-based, each service reacts on its own) and orchestrated saga (one service controls 

the sequence)



Testability
• For testing purposes, it’s hard to spin up a local instance of the system due to many independent components; 

we need some kind of isolation

• Unit tests with mocks/stubs

• Integration tests need real service instances or tools like Docker Compose

• Even local dev may require orchestration tools (e.g., Kubernetes)

• Asynchronous communication (e.g., message queues) makes behavior harder to verify

• Possible solutions:

• Consumer-driven contracts (e.g., Pact) – JSON defines consumer/provider expectations (e.g., GET /user/1)

• Service virtualization or sandbox environments – simulate full endpoints (e.g., WireMock)

• In-memory emulation – replace external DB/service/queue with fast in-memory versions (e.g., InMemoryDatabase)

• CI/CD pipelines – automatically set up integration environments



Management and Orchestration
How do we manage systems with 10+ components?

Required tools:

• Service registry (e.g., Consul, Eureka)

• API Gateway (e.g., YARP, Kong, Ocelot)

• Centralized logging (e.g., ELK stack, Grafana Loki)

• Health checks & monitoring (e.g., Prometheus, Grafana)

• Tracing (e.g., OpenTelemetry, Jaeger)



Architectural Elements
• Communication:

• REST (e.g., GET /orders/123)

• gRPC (binary, highly performant)

• Messaging (e.g., RabbitMQ)

• Database approaches:

• One per service

• Shared DB

• Authentication:

• Token-based (e.g., JWT)

• API Gateway enforces auth centrally

• Configuration:

• Externalized (e.g., Azure App Config)



Discussion
• Is a microservice the smallest architectural unit?

• Is microservice architecture overkill for simple applications?

• If you don’t know exactly why you need microservices – don’t implement them.

• Is it better to have 5 poorly maintained services, or 1 well-understood monolith?

• Would you rather need to update a massive monolith, or deal with a distributed system of 5 

complex services, only one of which you need to know in details?



Conclusion
• Microservices are not a "silver bullet." 

• The right architectural style choice depends on:

• Team size

• System complexity

• Scalability needs

• Also: maturity of your architecture and DevOps

The key is to understand when and why microservice architecture is better then a monolith!



Thank you for your 
attention!


	Slide 1: Development of Web Applications
	Slide 2: Today
	Slide 3: Problems with Monolithic Solutions
	Slide 4: Monolithic Architecture
	Slide 5: Layered Monolith
	Slide 6: Architectural Quantum
	Slide 7: Introduction to Microservices Architecture
	Slide 8: Quantum Characteristics of Microservices Architecture
	Slide 9: Characteristics of Microservice Architecture
	Slide 10: Microservice Challenges
	Slide 11: Failures and Consistency
	Slide 12: Failures and Consistency: Event Sourcing
	Slide 13: Failures and Consistency: Saga Pattern
	Slide 14: Testability
	Slide 15: Management and Orchestration
	Slide 16: Architectural Elements
	Slide 17: Discussion
	Slide 18: Conclusion
	Slide 19: Thank you for your attention!

